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1 Introduction

1 Introduction

The paper Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Us-
ing Ionized Donors in Silicon-28 of Saeedi et al. (2013) [2]| is about an ex-
periment to measure the relaxation times 77 and 75 of nuclear spins in doped
silicon. In this bachelor thesis I try to derive an approximate value for a contri-
bution to the relaxation time of phosphor atoms in silicon at room temperature
under the conditions of the experiment. The considered mechanism is the cou-
pling of the nuclei to the spins of the free electrons and holes. The aim is to
see if this mechanism can explain the experimental results on its own.

First, I will briefly introduce the Bloch equations and the relaxation times
as theoretical framework. The conditions and the results of the experiment
are described in the next section. After that I will start the calculation of the
relaxation time 7T analogously to deriving the Korringa relation, recapitulating
the calculations made in the book of Slichter (1990) [4]. This will end up
with an integral which has to be evaluated under the given conditions of the
experiment. For that the quasi Fermi level for both the electrons and holes
need to be calculated, which will be done in the next section. This section also
deals with finding an appropriate way to handle the Fermi-Dirac distribution.
And in the last section I will use the obtained results for solving the integral

to get a final result for the contribution to the relaxation time.






2 Bloch Equations

2 Bloch Equations

Imagine a nucleus with a spin of 1/2 in an external constant magnetic field
along the z-axis B = B - e,. In that case, the magnetic moment p precesses
about the z-axis with the Larmor frequency w;, = vB. Because of the Zeemann
effect the energy levels are splitting up with A =F| — Ey =h-wp =h-vB
with the gyromagnetic ratio 7. In a macroscopic material the summation over

the single magnetic moments yields the magnetization
M=Yn
i

Then the Bloch equations can be formulated phenomenologically:

dM, M,
= (M x B), — ==
o = V(M x B) T
dM, M,
=~(M x B), — =%
dt f}/( X )y T2
dMZ MO Mz
=~v(M x B),
g~ M xB).+—%

Here, My = xoB is the equilibrium magnetization with the susceptibility xo.
The first term in the Bloch equations describes the precession of the magneti-
zation about the external field with the Larmor frequency w; and the second
describes the relaxation with the characteristical times T and 75. So in equi-
librium we obtain M = M, - e,. T} is called longitudinal relaxation time
and is caused by several interactions, especially between the nuclei and the
electrons and holes. T, is called transversal relaxation time (or spin-spin re-
laxation time) and is caused by interactions between the nuclear spins among
each other, which leads to spin decoherence. Because of that, 75 is also called
coherence time. For the relaxation times it applies 75 < 2 -7} and in most
situations 77 is even bigger than T5. If you solve the Bloch equations, you

obtain with the initial magnetization M (0):

M, y(t) = M, 4(0) - e 7
(M. (t) = Mo) = (M.(0) — M) - € 7



2 Bloch Equations

So, the Relaxation times are just the mean lifetimes of the magnetization
components (more precisely, the components of the difference between the

actual magnetization and the equilibrium magnetization).



3 Experiment

3 Experiment

This section deals with the conditions of the experiment that are relevant for
our theoretical treatment and its results. They can be looked up detailed in
the paper of Saeedi et al. (2013) [2].

3.1 Conditions

In the experiment they used silicon enriched to 99.995% 28Si containing ~
5-10" em ™2 of the donor phosphorus-31 and ~ 5 - 10 cm™ of the acceptor
boron. Hence, it is a p-type semiconductor. The experiment involves three

steps:

1. For the preparation of the sample, a 1047 nm laser photoneutralizes all
the donors and acceptors. They optically hyperpolarizeﬂ the spins of the
neutral donor states (D°) and then fully ionize the donors for the mea-
surements, because the electrons of the neutral D° states were causing

decoherence and therewith a decrease of Ts.

2. While the relaxation processes, the sample gets manipulated to avoid

noise and interference caused by fluctuations.
3. The last step is the readout of the remaining spin population.

They used two different temperature profiles; either a fixed temperature at
T < 42K or a temperature at 4.2 K during the preparation and the readout
while the temperature during the relaxation process and the manipulation is

hold at room temperature (298 K).

3.2 Results

For the T}-relaxation they got a result of 78 min at 298 K and 77 > 1h at 1.9K.
For the coherence time at cryogenic temperatures they reached 7, = 180 min

at 1.2K and with room temperature they obtained 75 = 39 min.

!Hyperpolarization is a state in which the degree of alignment of nuclear spins is far beyond
thermal equilibrium.






4 Calculations on T from Slichter

4 Calculations on 77 from Slichter

As already mentioned, we consider the Tj-relaxation of the nuclei by their
coupling to the spins of the free electrons and holes. This leads to a derivation
similar to deriving the Korringa relation (cf. Slichter, 1990 (pp.151-157) [4]),

which considers the degenerate Caseﬂ for metals.

In this mechanism, a nuclear transition is coupled with a simultaneous electron
(or hole) transition in order to conserve energy. The number of transitions per
unit time between the initial state of nucleus and electron (or hole) |mks)
and the final state |nk’s’) is determined by Fermi’s Golden Rule (m, n are
the nuclear quantum numbers and k, s, k', s’ are the wave vectors and spin

orientations of the electron or hole.):
2
ka:s,nk:’s’ = % |<mks|V|nk/s'>|2 5(Em + Eks - En - Ek’s/) (41)

The initial electron (or hole) state has to be occupied while the final state has to

be unoccupied. Therefore, we have for the total nuclear transition probability

Wi = Z kas,nk's’f(ka 8)[1 - f(k,7 S/)}' (42)

! oo
k,s,k',s

The interaction from the s-state coupling between the nuclear and the electron
spins if’]
2
V= guofye’ynhQI - So(r) (4.3)

v, is the gyromagnetic ratio of the nucleus, so in this case, of phosphorus.

With Bloch’s theorem we get |mks) = |m) |s) ug(r) exp(ik - 7). And using

I ’ 6040/
Z (s1Sals") (8|S |s) = 5

/

$,8

2In the degenerate case, the Fermi level lays inside one of the energy bands.
3Different as in the book of Slichter, we use SI units instead of Gaussian units



4 Calculations on T from Slichter

one obtains

4
W = 57 15727, > (mlLaln) (n|I.|m) - G(T),

=t ag » _ [(m|Iu[n)|”
with

G(T) =Y [ur(0)]? [urs (0)* f (B ) [L = f(Ewr 5)]6(Em + Ens — En — Byer).
kK

Now, we can replace the summation over k and k' by an integral over Ej and
E,, introducing the density of states p(FEy) and replacing the |ug(0)[> with the
average over the energy surface (Jug(0)[?) 5, . And with a little approximation

and integrating over the delta function, we obtain
2
G(T) = [ dE ()P, (E) £(B)L - F(E)) (4.9

To finally get a equation involving the relaxation time 77, Slichter [4] uses the

following relation

Wmn Em_En2
) 1% ( )

T2 > B
> (ml[H, L]n) (n|[H, La]|m)

Qoo mn,a

2 2 (m|H?|m)

oo ; TT{[]Z’ Ia]2} 2 2
-5 () Tr{l;} =Tr{I.}

4
= g = §7Th3/i87§72 -G(T) (4.5)

So, we have reduced the problem to solving the integral (4.4)).



4 Calculations on T from Slichter

In a semiconductor, the density of states near the band edge is for the conduc-
tion band (cf. Kittel and Kroemer, 1980 [5])

3
Vo[2ml\?2

and for the valence band, respectively,

pv(E) = — (2””‘79)g By —F, (4.7)

T oz \ 2

with the effective masses of the electrons and holes m} and m;. E¢ and Ey
are the energies at the band edges of the conduction and the valence band, so
that the band gap is AE, = Ec — Ey.

The distribution function for electrons and holes is the Fermi-Dirac distribution

1
14 exp (:I:%) ’

fepn(E, Ep) = (4.8)
where the + is for electrons and the — for holes. Er is the Fermi level, which
in generally is temperature-dependent and has to be calculated. Nevertheless,
this integral over the Fermi distribution is not precisely analytically solvable,

therefore we have to make an appropriate approximation. The most often used

approximation is the Boltzmann distribution, which applies if exp (ﬂ: E ;fF ) >
1:

fe/h(E7 EF) =

! E_EF). (4.9)

A ex

1 +exp (j:—E;fF) P (:F kT
When integrating over the conduction (valence) band, this means Ec — Ep >
kT (Er — Ev > kT), so the Fermi level has to be somewhere in the band gap.
This is called the non-degenerate case or the classical regime. So it is in more
than one way interesting to know where the Fermi level lays (as a function of

temperature).






5 Quasi Fermi Levels

5 Quasi Fermi Levels

Let n. be the concentration of electrons in the conduction band and n;, the
concentration of holes in the valence band. Let further ng) be the concentra-
tion of (ionized) donors and n(A_) the concentration of (ionized) acceptors. In
a pure (or intrinsic) semiconductor the number of conduction electrons will be
equal to the number of holes for all temperatures, if the crystal is electrically
neutral. This means

ne —ny, = 0. (5.1)

This equation is called the neutrality condition. In the case of a doped semi-
conductor, we define An = nj; —nj. Then the neutrality condition turns
into

ne —np = An=n} —nj. (5.2)

However, this relation implies a total thermal equilibrium between the electrons
and holes, which does not apply in our situation (at least at not too high
temperatures) ]

At the end of the preparation of the sample, the donors gets optically ionized
and their electrons are excited into the conduction band, while the holes in
the valence band are in a thermal equilibrium with the holes in the acceptor
states. Thus we have no longer one Fermi level E'r but two quasi Fermi levels,
one for the conduction electrons E%“ and one for the holes in the valence band
and the acceptor states E?V. So, we have to look at the electrons and holes

separately.

4To be exact, the neutrality condition even holds true in a quasi equilibrium, as in our
case. But it is not helpful for calculating the quasi Fermi level (see below).

5More precisely, there is a third quasi Fermi level for the donor states, somewhere be-
low their energy level Ep. But the ionization of the donor states do not change with
temperature, so this is no interesting consideration.

S 11 -



5.1 Electrons 5 Quasi Fermi Levels

5.1 Electrons

For the conduction electrons, neglecting the thermal excitation from the va-

lence band, one has

nD:nE:ne:

= dE po(B) f.(E, ESC),  (5.3)

conduction band

with V' the volume of the crystal.

At cryogenic temperatures, we expect that the degenerate case applies and the
quasi Fermi level lays in the conduction band, because of the non-vanishing
number of conduction electrons at 0 K. With increasing temperature the quasi

Fermi level should fall into the band gap and the classical regime should apply.

Since there will be only free carriers near the band edge, the higher limit of

the integral can be chosen as o} giving us (using eq. ({.6) and (4.8))

o
e
1+eXp<Ek§F>

<m;kT)2 2 OOdX VX
27 h? NG 1 +exp (X —n)
0

m*kTg
_32( ; ) Fi2(n),

where the substitution X = (E—FE¢)/kT, n = (E9° — E¢)/kT has been made.
F;(n) is called the (complete) Fermi-Dirac integral. For j = 1/2 there is an

\)

approximation which is separately defined on two value domains and which

relative error is not bigger than 3% (cf. Blakemore, 1982 [1]):

3

T2\ 4
n° 4+ > for 1.3 <n < oo
Fipp=1 37 (1 (5.4)

0.27 + exp(—n)

for —oco<n<1.3

6The same trick will be used for the integration over the valence band, to set the lower
limit to —oo

-12 -



5 Quasi Fermi Levels 5.1 Electrons

Using the approximation for n < 1.3, gives us

, (kT 1
n =
b omh? 0.27 + exp(—n)

& pT)=—-In {l (msz)g - 0.27} (5.5)

np 27Th2
3
2 KT\ 2
& E9°(T) = Ec — kT {E (”;Thz ) - 0.27} . (5.6)

To check the applicability of the approximation, one can calculate the value
n(T = 0.1K) = —5.8 < 1.3 which shows that the degenerate case applies only
for very low temperatures, due to a low donor concentration. One can further
calculate n(T = 0.1K) for the classical regime. One obtains the equation
for the classical regime by dropping the 0.27 in equations —, which
gives us the same value up to the third decimal place. So, the Boltzmann
distribution is even at cryogenic temperatures a good approximation for the

Fermi distribution. This gives us

1 o0
ne = /dEpC(E)fE(E, EZ°)
Ec

mkT 2 ES° — E. >0 [
( ™ ) eXp( kT \/7_T/d exp( ) (5 7)
0

-~

=1

and analogously

L KT 2 B —E
m 2 —
nhzv/dEpv(E)fh(E,Egv):2( h ) exp (-F—V> (5.8)

orh? kT

Going now to higher temperatures, the thermal excitation between the valence
and the conduction band will not be neglectible anymore. From this point
onwards, a thermal equilibrium between the electrons and holes could arise.
The thermally generated conduction electrons can (in good approximation) be

described with the Fermi distribution for an intrinsic semiconductor.

- 13 -



5.1 Electrons 5 Quasi Fermi Levels

Thus, to take account for those extra conduction electrons, one can add an

extra term to eq. (5.3)):

] )
np = Ne — V / dFE ,OC(E>fe(E; E%)

Ec
3
LT 2 E9° — E E% — E,
S np =2 (me ) exp <—F T C) — exp (—FkT C)
3
E2° — By np [ 27h%\ 2 EY — E¢
& o <k—T =% Lar) T\ ) B9

2rh?
where we have used the relation (5.7). To calculate the Fermi level E%(T), we
start with the neutrality condition for a pure semiconductor ({5.1)), using again

and (5),

Ne = Ny,
KT 2 EY)—E KT 2 B —E
mekT 2 — ko mRT" 2 r— bv
&2 £ ) =2 —
(27rh2 > eXp( kT ) oh2 ) ¢ p( KT >
3
EY — Ec mi\ 1 AE,
A — 1
& exp < T ) (mZ exp | — o (5.10)
3
EY — By mi\ 1 AE,
A A . A1
& exp ( T ) <mz exp | 5 (5.11)

With eq. (5.9) and (5.10) we have

3 3
E2° —Ec\  np (27R2\?  [(mi\? AE,
| = o - 12
eXp( i > ) T Gs) @) O

2mh’ ; AE
& E% = Eo + kThn {TL?D <m7*rkT) + (:;Z) exp (— 2]{:7’9’)} (5.13)

So that for small T" the result is equal to neglecting the thermal above-gap

excitation ,
2 (miKET\:?2

E9 = Eo — kTIn{ = [ == 5.14

F C n {nD ( 012 ) } ( )

Y

- 14 -



5 Quasi Fermi Levels 5.1 Electrons

and for large T' it becomes the result of an intrinsic semiconductor ((5.10))

Eo+E, 3 me
peC _ ZCT BV Oy (M) 5.15
F 2 i (mh) (5.15)

- 15 -



5.2 Holes 5 Quasi Fermi Levels

5.2 Holes

For the holes it is a little more complicated because the acceptors are in gen-
erally not fully ionized. The thermal average occupancy of the acceptor states
is (cf. Kittel and Kroemer, 1980 (p.370) [5])

(5.16)

= f(A") =1 f(A7) = (5.17)

with E4 the energy level of the acceptor states.

For cryogenic temperatures we would expect the quasi Fermi level of the holes,
Egv, to be somewhere between Ey and E,, because at 0 K all the holes will
be in the acceptor states. With higher temperature the acceptor states should
ionize and the quasi Fermi level should rise until again thermal excitations

between the two bands will arise.

To describe the quasi equilibrium of the holes, we can adjust the neutrality

condition ({5.2)) into
np=mn,=mna-f(A7), (5.18)

where we again are going to add an extra term for the thermal above-gap

excitations. We additionally define for reasons of clarity and comprehensibility

9 3
na 21h 2
cr L= —
T 2 \mgkT

E, - F
XZ‘I:eXp(k—TV).

This gives us for the additional term

EV 3
1 mikT" 2 Ey — EY,
— [ dE py(E)fi(E,E%) = 2 - _—
=5 [ e e B (T e (R

=W

3
na <m2)4 ( AEg) _ na (mg/mp)
= — exp | — =
mz 2kT Cr VXC

cr

- 16 -



5 Quasi Fermi Levels 5.2 Holes

So, we have with eq. (5.11])

Ey
nas FAT) == 5 [ AE o BV (B, E)

L Ma_Ta 1 na (m:/m;)%
14 2)?5“/ cr X?V cr VXe
F

3
1 XA (TTL*/WL;;)Z XA
S op = +2 - —= 142—+
XUyt VR U

1_ mz %XA XA o mz % XA _CTXA
2 \m;,) VXo| X9 m;, ) 2v/Xc 2

3 2
X 1 N1 X 1 X
A 1 4 (mi> _Aa N cr A’
2VXC 4 mh 2VXC 4 2

>
®
o
2
I
A/~
3
o *
~

(5.19)

where in the last step we have used

3 2 3 3 2
m: 4 XA 1 i m: 4 XA . m: 4 XA 4 1
mi) 2vXo 4 mi) 2/Xe |\mi) 2y/Xe 4|
Now we can consider different temperature regimes to simplify this equation.

X4 Ec—By | Ea—Ey AE,
= eX — ~ ex —
Vo R 2T KT P\ o

This term vanishes for 7' — 0 and becomes relevant for very high temperatures.
On the contrary, cr - X4 o< T2 exp[(Ea — Ev)/kT)] gets relevant for low

temperatures and small for high temperatures. But there is also a third regime

at intermediate temperature, where one can neglect the X,/v/Xc-term while

cr - X4 = cp, which is still small because of the 3.

_17 -



5.2 Holes 5 Quasi Fermi Levels

Low temperature:

Xa _ JerXa
X 2
3
Ea+ Ey 2 [mikT\1
= pYV =4 "7V kT h 5.20
F 5 + n{ —nA<27rh2> } ( )

Intermediate temperature:

X, 1
A —< 1+\/1+8CTXA> ~ cr X4

X9V T4

3
2 (mikT\?
= E?V = EV+len{ (”;;h2> } (5.21)

High temperature:

X4 N (m:)‘* X4

X9 o \mp ) vXc

EetBv 3,0, (e
2 4

- E¥Y = (5.22)

*

my

The whole temperature dependence of the quasi Fermi levels of both the
holes and the electrons are shown in fig. [Il One can now see that in the high
temperature regime Egv = Egc = EY holds true, which is the case in an
intrinsic semiconductor. Furthermore, the second regime has exact the same
form as the low temperature regime of Egc which indicates that in this regime
the acceptors are fully ionized. In the supplementary materials for the paper
of Saeedi et al. (2013) [3|, the authors stated that the percentage of ionized
acceptors would be one percent at 30 K and at a temperature of 70 K almost
all the acceptors would be ionized. Now, one can see that at 30K, indeed,
one percent of the acceptors are ionized (see fig. and at 70K only ten
percent of neutral donors remain. This small temperature interval is due to
the small width of the Fermi distribution, 2k7T', as it passes the energy level of

the acceptors.

- 18 -



5 Quasi Fermi Levels 5.2 Holes

Qv
Ep

E-E, [eV]

Figure 1 — The quasi Fermi levels of the conduction electrons (blue) and the holes
(red) as a function of temperature.

0.12 99% 90% : . 19% . : 1% 19

2V
=

0.10+

E-E, [eV]

o
=5
T

0.

0.00 i i i i i ' ' .
0 10 20 30 40 50 60 70 8 _ 90 100

TIK]

Figure 2 — The quasi Fermi level of the holes (red) and the remaining relative amount
of neutral acceptors (green), both as a function of temperature. The ionization levels
of 1%, 10%, 90% and 99% are indicated. The error bars are just k7T as a measure
for the width of the Fermi distribution.
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5.3 Total Equilibrium 5 Quasi Fermi Levels

5.3 Total Equilibrium

So, for high temperatures the quasi Fermi levels will move together and the
system can then be described by one Fermi level, as in a total equilibrium. But
it is possible that this total equilibrium even occurs at a lower temperature.
This would involve that the quasi Fermi levels suddenly jump together, caused
by electron-hole recombination. Therefore, we will now consider a total equi-
librium. So we start with the neutrality condition for doped semiconductors

62):

— ot -~
Ne —Njp =NJ, — Ny " Np — N,

where we use that the equilibrium only shows up for high temperatures while
the acceptors are already fully ionized. For n. and n; we again use eq. (5.7))
and (5.8)). We also use the following definitions

5\ 2
R nA—nD<27rh )2
Cr . =

2 my kT
E;, — By
X, = _
exp< - )
3 3
= n 9 m;kT 2 m: 28 EF—EC o Ev—EF
— Ny = Xp| ———— | —exp | —————
b orhi? m: ) P\ kT P\TkT

So that for high temperatures, we have the intrinsic regime

1 [(mz\? 1
X \V\mp) Xc

EC—|—EV 3 (mZ)

2 4 my

- 90 -



5 Quasi Fermi Levels 5.3 Total Equilibrium

o E;:_J\-’
. E}&Jf_’. .
ettt EF
=
2
Lnlj‘ i
qu k- "’ ) E #
E
0.6

Figure 3 — The quasi Fermi levels in comparison to the Fermi level in a total
equilibrium (green).

and for intermediate temperatures, since the low-temperature case is excluded

because of the full ionization of the acceptor states, we have

1 ¢ e\
T T\ -
Xp o2 " (2) -

3
2 1T 2
:>EF:EV+k:T1n{ (mhk ) }

na—nNp 27Th2

In fig. |3| one can see that the Fermi level in the total equilibrium varies only
very little from the quasi Fermi level of the holes, due to the fact that the
concentration of acceptors is by a factor of 100 greater than the concentration

of donors.

- 21 -






6 Relaxation Time

6 Relaxation Time

Now that we have calculated the Fermi levels, we can continue on calculating
the contribution to the relaxation time 7;. So we start with eq. using
again the Boltzmann distribution (4.9). We also set the energy level of the
average of the wave function, (\uk(0)|2)2E, to the respective band edge, because
most of the free carriers will be near the band edge, as already discussed earlier.
We furthermore use the approximation f(E)[1—f(E)] ~ f(E), which is a good

approximation since we use the Boltzmann distribution. This gives us, using

eq (6) and (L7,

2

G(T) = [ dE (ju 0P} A(E) F(E)1 - 1(B)

e}

— (un(O))2)?, / dE p3(E.T) f(E.T)[1 - [.(E.T)]

+(ue )}, [ 4B (ETIAE D)L - fi(E.T)

—00

= (Jux(0)?),. (%2)2 (2;’;)3 ]odE (B - Eg)exp <%>

+ {|ux(0)[2);, (2—‘;)2 (2;_?2)3 7dE (Ey — E) exp (E_k—fgv> ,

If one approximate the wave function to be constant with respect to the loca-

tion[’] from the normalization can be followed

1= [ )P dr = O [

crystal crystal
1
= luwO)F =
2 1
= (a0, = 7

"This is maybe a very radical approximation. Actually, the wave function should be much
higher at the nucleus (» = 0) which would lead to a smaller relaxation time, but let us
go on with that at the moment.

- 93 -



6 Relaxation Time

KT\ (2m2\* (B —E.\ [
= G(T) = <ﬁ> <h—28> exXp (FTC /dXXeXp(X)

0

N J/
-

part.oo
X exp(X)=1
0

o0

KT\? (2m:\* EYY _FE
+ <ﬁ> ( h2h> exp <—FTV /dXXeXp(X)
0

. S
~~

=1

@3 1 4 3 2 92 9
—— ) -G(T
8 (oYernkT)? | .3 E2C — By .3 Ey — B9
o s | P\ T er Ty exp |

Now, we can either plug in the quasi Fermi levels, and (5.19), or the
Fermi level for the total equilibrium and calculate the relaxation time for a
given temperature. The value for the band gap of silicon, AE, = Ey — E¢c =
1.14 eV, and the effective masses for silicon in units of the free electron mass,
m; = 1.06 - m, and mj; = 0.58 - m,, were taken from table 13.1 (p.357) of the
book of Kittel and Kroemer (1980) [5]. From table 13.2 (p.368) of the same
book were taken the ionization energies of phosphorus and boron in silicon,
Ec— EY) = E® — By, = 45meV. With this we obtain

T1(289K) ~ 200 years in total equilibrium,
T1(289K) ~ 194 years in quasi equilibrium,
T1(1.9K) ~ 100, 600 years.

-24 -



7 Conclusion

7 Conclusion

The received relaxation times are obviously much larger than the measured
results from the experiment. This means that we can not explain the experi-
mental results with this calculations and this leads to the assumption that the
contribution delivered by the considered mechanism is too small. We would
probably obtain a better result if we had a better approach on the wave func-
tion at the nucleus, but it is highly doubtful whether this explains the results
on its own. So, there has to be other interactions which cause relaxation, e.g.

interaction between the nuclei and the phonons of the lattice.
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